Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment.
نویسندگان
چکیده
This paper presents the experimental observation of piezoelectric generation from a single ZnO wire/belt for illustrating a fundamental process of converting mechanical energy into electricity at nanoscale. By deflecting a wire/belt using a conductive atomic force microscope tip in contact mode, the energy is first created by the deflection force and stored by piezoelectric potential, and later converts into piezoelectric energy. The mechanism of the generator is a result of coupled semiconducting and piezoelectric properties of ZnO. A piezoelectric effect is required to create electric potential of ionic charges from elastic deformation; semiconducting property is necessary to separate and maintain the charges and then release the potential via the rectifying behavior of the Schottky barrier at the metal-ZnO interface, which serves as a switch in the entire process. The good conductivity of ZnO is rather unique because it makes the current flow possible. This paper demonstrates a principle for harvesting energy from the environment. The technology has the potential of converting mechanical movement energy (such as body movement, muscle stretching, blood pressure), vibration energy (such as acoustic/ultrasonic wave), and hydraulic energy (such as flow of body fluid, blood flow, contraction of blood vessels) into electric energy that may be sufficient for self-powering nanodevices and nanosystems in applications such as in situ, real-time, and implantable biosensing, biomedical monitoring, and biodetection.
منابع مشابه
Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices
Research applications in biomedical science and technology usually require various portable, wearable, easy-to-use, and/or implantable devices that can interface with biological systems. Organic or hybrid organic–inorganic microelectronics and nanoelectronics have long been a possibility. However, these devices require a power source, such as electrochemical cells or piezoelectric, thermoelectr...
متن کاملPiezoelectric potential output from ZnO nanowire functionalized with p-type oligomer.
We have studied the piezoelectric potential output of a ZnO wire/belt functionalized with p-type oligomer (2,5-Bis(octanoxy)-1,4-bis(4-formyl phenylene vinylene) benzene) (OPV2) when it was deflected by an atomic force microscope (AFM) tip in contact mode. In comparison to the ZnO wire/belt without oligomer coating, an extra positive voltage peak was observed prior to the appearance of a negati...
متن کاملRecent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors
ticle as: Y. Hu, Z nd active sensors Abstract Mechanical energy sources are abundant in our living environment, such as body motion, vehicle transportation, engine vibrations and breezy wind, which have been underestimated in many cases. They could be converted into electrical energy and utilized for many purposes, including driving small electronic devices or even constructing an integrated sy...
متن کاملNanowire-Quantum Dot Hybridized Cell for Harvesting Sound and Solar Energies
We have demonstrated sound-wave-driven nanogenerators using both laterally bonded single wires and vertically aligned nanowire arrays for energy harvesting in the frequency range of 35-1000 Hz. The electricity produced by the single wire generator (SWG) is linearly proportional to the input acoustic energy, while the frequency does not affect the performance of the SWG in this study. By infiltr...
متن کاملInvestigation of the Size Effect on the Nano-beam Type Piezoelectric Low Power Energy Harvesting
In this paper, size dependent beam type peizoelectric energy hardvester is investigated. For this goal, first nonlinear formulation of isotropic piezoelectric Euler-Bernoulli nano-beam is developed based on the size-dependent piezoelectricity theory then special beam type piezoelectric energy hardvester is probed for different parameters. Basic nonlinear equations of piezoelectric nano-beam are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 6 8 شماره
صفحات -
تاریخ انتشار 2006